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Gergely Palla,1,2 Imre Derényi2 and Tamás Vicsek1,2

Received February 1, 2006; accepted July 18, 2006
Published Online August 1, 2006

Motivated by the success of a k-clique percolation method for the identification of
overlapping communities in large real networks, here we study the k-clique percola-
tion problem in the Erd´́os–Rényi graph. When the probability p of two nodes being
connected is above a certain threshold pc(k), the complete subgraphs of size k (the
k-cliques) are organized into a giant cluster. By making some assumptions that are
expected to be valid below the threshold, we determine the average size of the k-clique
percolation clusters, using a generating function formalism. From the divergence of this
average size we then derive an analytic expression for the critical linking probability
pc(k).
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1. INTRODUCTION

Many complex systems in nature and society can be successfully represented in
terms of networks capturing the intricate web of connections among the units
they are made of. Graphs corresponding to these real networks exhibit unexpected
non-trivial properties, e.g., new kinds of degree distributions, anomalous diame-
ter, spreading phenomena, clustering coefficient, and correlations.(1−5) In recent
years, there has been a quickly growing interest in the local structural units of net-
works. Small and well defined subgraphs consisting of a few vertices have been
introduced as “motifs”. (6) Their distribution and clustering properties(6−8) can be
considered as important global characteristics of real networks. Somewhat larger
units, associated with more highly interconnected parts(9−21) are usually called
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Hungary.

219

0022-4715/07/0700-0219/0 C© 2007 Springer Science+Business Media, Inc.



220 Palla et al.

clusters, communities, cohesive groups, or modules, with no widely accepted,
unique definition. Such building blocks (functionally related proteins, (22,23) indus-
trial sectors, (24) groups of people, (17,25) cooperative players, (26,27) etc.) can play a
crucial role in the structural and functional properties of the networks involved.
The presence of communities is also a relevant and informative signature of the
hierarchical nature of complex systems. (22,28,29)

Most of the methods used for the identification of communities rely on
dividing the network into smaller pieces. The biggest drawback of these methods
is that they do not allow overlapping for the communities. On the other hand, the
communities in a complex system are often not isolated from each other, but rather,
they have overlaps, e.g., a protein can be part of more than one functional unit, (30)

and people can be members in different social groups at the same time. (31) One
possibility to overcome this problem is to use a community definition based on
k-clique percolation. (32,33) In this approach the communities are associated with
k-clique percolation clusters, and can overlap with each other. The communities
of large real networks obtained with this method were shown to have significant
overlaps, and the statistical properties of the communities exhibited non-trivial
universal features. (33)

In this manuscript we focus on the basic properties of k-clique percolation. In
a recent work we have already proposed an expression for the critical point of the
k-clique percolation in the Erd´́os–Rényi (E–R) graph using simple heuristic argu-
ments. (32) This expression has also been supported by our numerical simulations.
The goal of this manuscript is to make these result stronger by providing a more
detailed analytical derivation using only a few reasonable assumptions, expected
to be valid below the critical point. We note that the critical point of k-clique
percolation plays a crucial role in the community finding as well. When dealing
with a network containing weighted links, one can introduce a weight threshold
and exclude links weaker than the threshold from the investigation. When the
threshold is very high, only a few disintegrated community remains, whereas in
case of a very low threshold, a giant community arises smearing out the details of
the community structure by merging (and making invisible) many smaller commu-
nities. To find a community structure as highly structured as possible, one needs
to set the threshold close to the critical point of the k-clique percolation.

2. K -CLIQUE PERCOLATION IN THE E–R GRAPH

In the field of complex networks, the classical E–R uncorrelated random
graph(34) serves both as a test bed for checking all sorts of new ideas concerning
networks in general, and as a prototype of random graphs to which all other random
graphs can be compared. One of the most conspicuous early result on the E–R
graphs was related to the percolation transition taking place at p = pc ≡ 1/N ,
where p is the probability that two vertices are connected by an edge and N is
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Fig. 1. Sketches of two E–R graphs of N = 20 vertices and with edge probabilities p = 0.13 (left one)
and p = 0.22 (right one, generated by adding more random edges to the left one). In both cases all the
edges belong to a “giant” connected component, because the edge probabilities are much larger than
the threshold (pc ≡ 1/N = 0.05) for the classical E–R percolation transition. However, in the left one
p is below the 3-cliques percolation threshold, pc(3) ≈ 0.16, calculated from Eq. (19), therefore, only
a few scattered 3-cliques (triangles) and small 3-clique percolation clusters (distinguished by black
and dark gray edges) can be observed. In the right one, on the other hand, p is above this threshold and,
as a consequence, most 3-cliques accumulate in a “giant” 3-clique percolation cluster (black edges).
This graph also illustrates the overlap (half black, half dark gray vertex) between two clusters (black
and dark gray).

the total number of vertices in the graph. The appearance of a giant component
in a network, which is also referred to as the percolating component, results in a
dramatic change in the overall topological features of the graph and has been in
the center of interest for other networks as well.

In this manuscript we address the general question of subgraph percolation in
the E–R model. In particular, we provide an analytic expression for the threshold
probability at which the percolation transition of complete subgraphs of size k
(the k-cliques) takes place. Before proceeding we need to go through some basic
definitions:

• k-clique: a complete (fully connected) subgraph of k vertices. (35)

• k-clique adjacency: two k-cliques are adjacent if they share k − 1 vertices,
i.e., if they differ only in a single node.

• k-clique chain: a subgraph, which is the union of a sequence of adjacent
k-cliques.

• k-clique connectedness: two k-cliques are k-clique-connected if they are
parts of a k-clique chain.

• k-clique percolation cluster (or component): a maximal k-clique-connected
subgraph, i.e., it is the union of all k-cliques that are k-clique-connected to
a particular k-clique.

The above concept of k-clique percolation is illustrated in Fig. 1, where both
graphs contain two 3-clique percolation clusters, the smaller ones in dark gray
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and the larger ones in black. We note that these objects can be considered as
interesting specific cases of the general graph theoretic objects defined by Everett
and Borgatti (36) and by Batagelj and Zaversnik (37) in very different contexts.

An illustration of the k-clique percolation clusters can be given by “k-clique
template rolling”. A k-clique template can be thought of as an object that is
isomorphic to a complete graph of k nodes. Such a template can be placed onto
any k-clique of the network, and rolled to an adjacent k-clique by relocating one of
its nodes and keeping its other k − 1 nodes fixed. Thus, the k-clique-communities
of a graph are all those subgraphs that can be fully explored by rolling a k-clique
template in them but cannot be left by this template. We note that a k-clique
percolation cluster is very much like a regular edge percolation cluster in the
k-clique adjacency graph, where the vertices represent the k-cliques of the original
graph, and there is an edge between two vertices if the corresponding k-cliques
are adjacent. Moving a particle from one vertex of this adjacency graph to another
one along an edge is equivalent to rolling a k-clique template from one k-clique
of the original graph to an adjacent one.

3. THE GENERATING FUNCTIONS

In our investigation of the critical point of the k-clique percolation in the E–R
graph we shall rely on the generating function formalism in a fashion similar to
that of Ref. 38. Therefore, in this section we first summarize the definition and
the most important properties of the generating functions. If a random variable
ξ can take non-negative integer values according to some probability distribution
P(ξ = n) ≡ ρ(n), then the corresponding generating function is given by

Gρ(x) ≡ 〈xξ 〉 =
∞∑

n=0

ρ(n)xn. (1)

The generating-function of a properly normalized distribution is absolute conver-
gent for all |x | ≤ 1 and hence has no singularities in this region. For x = 1 it is
simply

Gρ(1) =
∞∑

n=0

ρ(n) = 1. (2)

The original probability distribution and its moments can be obtained from the
generating-function as

ρ(n) = 1

n!

dnGρ(x)

dxn

∣∣∣∣
x=0

, (3)
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〈ξ l〉 =
∞∑

n=0

nlρ(n) =
[(

x
d

dx

)l

Gρ(x)

]

x=1

. (4)

And finally, if η = ξ1 + ξ2 + · · · + ξl , where ξ1, ξ2, . . . , ξl are independent ran-
dom variables (with non-negative integer values), then the generating function
corresponding to P(η = n) ≡ σ (n) is given by

Gσ (x) = 〈xη〉 = 〈xξ1 xξ2 · · · xξl 〉 = 〈xξ1〉〈xξ2〉 · · · 〈xξl 〉
= Gρ1 (x)Gρ2 (x) · · · Gρl (x). (5)

4. THE CRITICAL POINT

In this section we arrive at the derivation of the critical point of the k-clique
percolation in the E–R graph in the N → ∞ limit. We begin by considering the
probability distribution r (n) of the number of k-cliques adjacent to a randomly
selected k-clique. Finding a k-clique B adjacent to a selected k-clique A is equiv-
alent to finding a node outside A linked to at least k − 1 nodes in A. The number
of possibilities for this node is N − k. Links in the E–R graph are independent of
each other, therefore the probability that a given node is linked to all nodes in A is
pk , whereas the probability that it is linked to k − 1 nodes in A is k(1 − p)pk−1.
Therefore, to leading order in N the average number of k-cliques adjacent to a
randomly selected one is

〈r〉 = (N − k)[k(1 − p)pk−1 + pk] 	 Nkpk−1. (6)

From the independence of the links it also follows that the probability distribution
r (n) becomes Poissonean, which can be written as

r (n) = exp(−Nkpk−1)
(Nkpk−1)n

n!
. (7)

Let us suppose that we are below the percolation threshold, therefore,
k-cliques are rare, adjacent k-cliques are even more rare, and loops in the k-
clique adjacency graph are so rare that we can assume it to be tree-like. (39) In
this case the size of a connected component in the k-clique adjacency graph (cor-
responding to a k-clique percolation cluster) can be evaluated by counting the
number of k-cliques reached in an “invasion” process as follows. We start at an
arbitrary k-clique in the component, and in the first step we invade all its neighbors
in the k-clique adjacency graph. From then on, whenever a k-clique is reached,
we proceed by invading all its neighbors, except for the one the k-clique has been
reached from, as shown in Fig. 2a. In terms of the original graph, this is equivalent
to rolling a k-clique template to all adjacent k-cliques except for the one we arrived
from in the previous step.
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Fig. 2. Schematic picture of the evaluation of the size of a k-clique percolation cluster by counting
the number of k-cliques reached in an “invasion” process. (a) Let us suppose that we arrived at the
black colored k-clique from the k-clique marked by dashed lines. In the next step we must proceed
to the k-cliques shown in dark gray, and then finally to the k-cliques marked in light gray. (b) The
corresponding k-clique adjacency graph is shown on the right. The size of the connected component
in the k-clique adjacency graph we can invade from the black k-clique (by excluding the link through
which we initially reached it) is equal to one plus the sum of the sizes of the connected components
invaded from the dark gray k-cliques in the same way.

In the invasion process described above, we can assign to each k-clique the
subgraph in the k-clique percolation cluster that was invaded from it. (Note that
we assumed the k-clique adjacency graph to be tree-like). Let us denote by I (n)
the probability, that the subgraph reached from an arbitrary starting k-clique in the
invasion process contains n number of k-cliques, including the starting k-clique as
well. This subgraph is actually equal to a k-clique percolation cluster. Similarly, let
H (n) denote the probability that the subgraph invaded from a k-clique appearing
later in the invasion process (i.e., from a k-clique that is not the starting one) con-
tains n number of k-cliques. This is equivalent to the probability that by starting at
a randomly selected k-clique and trying to roll a k-clique template via all possible
subsets of size k − 1 except for one, then by succeedingly rolling the template
on and on, in all possible directions without turning back, a k-clique percolation
“branch” of size n is invaded. And finally, let Hm(n) be the probability, that if
pick m number of k-cliques randomly, then the sum of the sizes of the k-clique
branches that we can invade in this way consists of n number of k-cliques. Since
we are below the percolation threshold, the k-clique adjacency graph consists of
many dispersed components of small size, and the probability that two (or more)
k-cliques out of m belong to the same k-clique percolation cluster is negligible.
Hence, according to Eq. (5), the generating functions corresponding to H (n) and
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Hm(n), denoted by G H (x) and G Hm (x) respectively are related to each other as:

G Hm (x) = [G H (x)]m . (8)

Let q(n) denote the probability, that for a randomly selected k-clique, by
excluding one of its possible subsets of size k − 1, we can roll a k-clique template
through the remaining subsets to n adjacent k-cliques. This distribution is very
similar to r (n), except that in this case we can use only k − 1 subsets instead of k
in the k-clique to roll the k-clique template further, therefore

q(n) = exp(−N (k − 1)pk−1)
(N (k − 1)pk−1)n

n!
. (9)

By neglecting the loops in the k-clique adjacency graph, Hn can be expressed as

H (n) = q(0)H0(n − 1) + q(1)H1(n − 1) + q(2)H2(n − 1) + . . . , (10)

as explained in Fig. 2b. By taking the generating function of both sides and using
Eqs. (3) and (8), we obtain

G H (x) =
∞∑

n=0

[ ∞∑

m=0

q(m)Hm(n − 1)

]
xn

=
∞∑

n=0

[ ∞∑

m=0

q(m)
1

(n − 1)!

dn−1

dxn−1
[G H (x)]m

∣∣∣∣
x=0

]
xn

=
∞∑

m=0

q(m) [G H (x)]m x = xGq (G H (x)), (11)

where Gq (x) denotes the generating function of the distribution q(n).
We can write an equation similar to Eq. (10) for I (n) as well, in the form of

I (n) = r (0)H0(n − 1) + r (1)H1(n − 1) + r (2)H2(n − 1) + · · · (12)

Again, by taking the generating functions of both sides we arrive at

G I (x) = xGr (G H (x)), (13)

where Gr (x) denotes the generating function of r (n). From Eqs. (4) and (13) we
get

〈I 〉 = G ′
I (1) = Gr (G H (1)) + G ′

r (G H (1))G ′
H (1) = 1 + G ′

r (1)G ′
H (1) (14)

for the average size of the components invaded from a randomly selected k-clique.
Using Eq. (11) we can write

G ′
H (1) = Gq (G H (1)) + G ′

q (G H (1))G ′
H (1) = 1 + G ′

q (1)G ′
H (1), (15)
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from which G ′
H (1) can be expressed as

G ′
H (1) = 1

1 − G ′
q (1)

. (16)

By substituting this back into Eq. (14) we get

〈I 〉 = 1 + G ′
r (1)

1 − G ′
q (1)

= 1 + 〈r〉
1 − 〈q〉 . (17)

The above expression for the expected size of the connected components in the
k-clique adjacency graph invaded from a randomly selected k-clique diverges
when

〈q〉 = N (k − 1)pk−1 = 1. (18)

This point marks the phase transition at which a giant component (corresponding
to a giant k-clique percolation cluster) first appears. Therefore, our final result for
the critical linking probability for the appearance of the giant component is

pc(k) = 1

[N (k − 1)]
1

k−1

. (19)

This result reassures the findings of (32) based on heuristic arguments and numeri-
cal simulations. Obviously, for k = 2 our result agrees with the known percolation
threshold (pc = 1/N ) for E–R graphs, because 2-clique connectedness is equiva-
lent to regular (edge) connectedness.

5. CONCLUSIONS

The phenomenon of k-clique percolation provides an effective tool for finding
overlapping communities in large networks. In this article we derived the critical
linking probability for the E–R graph in the N → ∞ limit. Our method involved
the use of generating functions and was based on the assumption that up to the
critical point, loops in the k-clique adjacency graph are negligible. Our findings
are in complete agreement with earlier results based on heuristic arguments and
numerical simulations.
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8. J.-P. Onnela, J. Saramäki, J. Kertész and K. Kaski, Phys. Rev. E 71: 065103 (2005).
9. M. Blatt, S. Wiseman and E. Domany, Phys. Rev. Lett. 76: 3251 (1996).

10. M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. USA 99: 7821 (2002).
11. H. Zhou, Phys. Rev. E 67: 061901 (2003).
12. M. E. J. Newman, Phys. Rev. E 69: 066133 (2004).
13. F. Radicchi, C. Castellano, F. Cecconi, V. Loreto and D. Parisi, Proc. Natl. Acad. Sci. USA 101:

2658 (2004).
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